miRNA-340 inhibits osteoclast differentiation via repression of MITF

نویسندگان

  • Hongying Zhao
  • Jun Zhang
  • Haiyu Shao
  • Jianwen Liu
  • Mengran Jin
  • Jinping Chen
  • Yazeng Huang
چکیده

Many miRNAs play critical roles in modulating various biological processes of osteoclast differentiation and function. Microphthalmia-associated transcription factor (MITF), a target of miR-340, served as pivotal transcription factor involved in osteoclast differentiation. However, the role of miR-340 and MITF during osteoclast differentiation has not yet been clearly established. Tartrate-resistant acid phosphatase (TRAP) staining assay was performed to identify osteoclasts differentiated from bone marrow-derived macrophages (BMMs). Quantitative reverse transcription PCR (qRT-PCR) or Western blotting was undertaken to examine the mRNA or protein expression respectively. Luciferase reporter assay was performed to investigate the interaction between miR-340 and MITF. MITF was knocked down and miR-340 was overexpressed and transfected into BMMs to detect their effects on osteoclast differentiation. Firstly, qRT-PCR analysis showed that miR-340 was down-regulated during osteoclast differentiation stimulated by macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-κB (RANK) ligand (RANKL). Besides, we found that overexpression of miRNA-340 inhibited osteoclast differentiation and suppressed both the mRNA and protein level of MITF. Finally, Western blot and qRT-PCR analysis revealed that silencing MITF inhibited TRAP, calcitonin receptor, V-ATPase d2, and cathepsin K. miR-340 suppresses osteoclast differentiation by inhibiting MITF. Our findings may provide promising therapeutic targets for osteoclast-associated diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HDAC3 and HDAC7 have opposite effects on osteoclast differentiation.

Histone deacetylases (HDACs) are negative regulators of transcription. Endochondral bone formation including chondrocyte and osteoblast maturation is regulated by HDACs. Very little is known about the role HDACs play in osteoclast differentiation. It has been previously reported that HDAC inhibitors, trichostatin A and sodium butyrate, suppress osteoclast differentiation through multiple mechan...

متن کامل

miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate.

When stem cells and multipotent progenitors differentiate, they undergo fate restriction, enabling a single fate and blocking differentiation along alternative routes. We herein present a mechanism whereby such unequivocal commitment is achieved, based on microRNA (miRNA)-dependent repression of an alternative cell fate. We show that the commitment of monocyte RAW264.7 progenitors to active mac...

متن کامل

Id helix-loop-helix proteins negatively regulate TRANCE-mediated osteoclast differentiation.

Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE) induces osteoclast formation from monocyte/macrophage lineage cells via various transcription factors, including the Mi transcription factor (Mitf). Here, we show that inhibitors of differentiation/DNA binding (Ids), helix-loop-helix (HLH) transcription factors, negatively regulate TRANCE-induced osteoclast differentiation...

متن کامل

MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor (MITF) mRNA is inhibited by coding region determinant-binding protein (CRD-BP).

Alternative cleavage and polyadenylation generates multiple transcript variants producing mRNA isoforms with different length 3'-UTRs. Alternative cleavage and polyadenylation enables differential post-transcriptional regulation via the availability of different cis-acting elements in 3'-UTRs. Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte development ...

متن کامل

PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts.

Cytokine signaling via various transcription factors regulates receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-mediated osteoclast differentiation from monocyte/macrophage lineage cells involved in propagation and resolution of inflammatory bone destruction. Protein inhibitor of activated STAT3 (PIAS3) was initially identified as a molecule that inhibits DNA binding of STAT3 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2017